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Sideband damping of water waves over a soft bed 
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The Benjamin & Feir sideband instability of gravity waves over a rigid bed is 
extended here to the case of wave propagation over a compliant bed. The bed is 
assumed elastic with inhomogeneous properties, following some vertical stratification 
profile. The elastic stiffness at the mudline is assumed very small, as is typically the 
case for upper-stratum gel-like marine mud, so that its effect is assumed comparable 
in magnitude with that of wave nonlinearity. It is then shown that through the 
sideband instability, the carrier gravity wave would lose energy to sideband 
oscillations. These sidebands will be shown to be contaminated with small-amplitude, 
but very short elastic shear waves. These shear waves will interact with the viscous 
boundary layer at the bed-water interface, and thus significantly enhance the 
viscous damping of wave energy in the boundary layer. 

1. Introduction 
The absence of large waves is the most obvious feature of major coastal mud-bank 

regions around the world. Many of these mud banks are along open ocean coasts 
where they are frequently subjected to the full loading of storm waves coming from 
deep water. This is primarily attributed to the extraordinary ability of the gel-like 
bottom mud to dissipate the incoming water-wave energy. Examples of major open 
coast mud-banks include those of the southwest coast of India, the northeast coast 
of South America, and in the Gulf of Mexico basin. Observations from the SW Indian 
Coast and the Louisiana ‘mud hole’ indicate that the dissipative mechanism of the 
mud banks becomes ‘fully activated ’ during storm conditions (e.g. Jacob & Qasim 
1974; Wells 1983; Bea 1974), resulting in exceptionally high wave damping rates. 
For example, during the SW monsoon season, incident storm waves off Kerala, 
India, are observed to become almost completely damped out within a distance of 
only 4-8 wavelengths as they cross into the mud-bank region (MacPherson 1980). 
The boundaries of the mud-bank accumulations can then be mapped visually 
because of this rather sudden calming effect on incident waves. 

Various theories have been proposed for the dissipation mechanism. Gade (1958) 
and Dalrymple & Liu (1978) assumed that the mud behaves as a very viscous fluid 
and considered the internal friction dissipation inside the mud layer as it interacts 
with the overlying water layer. Hsioh & Shemdin (1980) and MacPherson (1980) 
proposed instead a linear Voigt-body, or a viscoelastic model for the bed material. In 
these studies, the eigenvalue problem of the coupled seawave-seabed system was 
solved yielding both the dispersion relation for the surface water waves and the 
damping rate of these waves (the real and imaginary parts of the surface-wave 
eigenvalue, respectively). Although the obtained damping rates are significantly 
higher than those predicted by earlier rigid-bed bottom friction models (e.g. Putnam 
1949), they are still too small, for realistic values of marine mud viscosities, to 
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explain some of the observed spectacular dampings, especially during storm wave 
conditions. A more serious shortcoming of these above-mentioned linear damping 
models is that the observed enhancement of damping during severe wave loading is 
a basic nonlinear feature of the problem that cannot be explained by a linear 
model. 

The present paper re-examines the interaction problem between surface gravity 
waves and a flexible bed that is both elastic and viscous. The analysis is extcnded to 
the nonlinear domain where it will be shown that the Benjamin & Feir (1967) 
sideband instability of gravity waves over rigid bed applies here just as well. In  the 
presence of the elasticity and viscosity of the bed, this instability will be shown to 
lead to  the transfer of energy from the carrier wave to highly dissipative sideband 
oscillations. Thus, in our proposed damping mechanism, the energy is first lost to the 
sideband, which in turn loses its acquired energy to bed friction. Although energy is 
ultimately lost to viscous friction, it will be shown that both the elasticity and the 
viscosity of the mudline are playing a central role in the dissipation mechanism. I n  
fact. the main purpose of this paper is to highlight the important role of the mudline 
elasticity in enhancing viscous damping. 

Let us start by comparing the scales of the viscous vs. the elastic response in the 
seabed for typical marine mud properties. For bed viscosity, it can be seen from a 
simple dimensional argument that although mud viscosity can be as largo as lo4 
times that of water or even larger (e.g. Dalrymple & Liu 1977), its effect is still small 
relative to the elasticity and gravity effects. This can be shown by comparing the 
lengthscales associated with each cffect. For a wave frequency w the gravity length- 
scale k-' would be g/w2  (k is the gravity wavenumber), while the viscvns lengthscale 
S would be ( v / w ) i  where v is the kinematic viscosity. On the other hand, the bed 
elasticity lengthscale sol (so is the elastic shear wavenumber) is defined in terms of the 
bed material shear modulus Go and density po as so1 N (Go/po w2) i .  For representative 
values of upper-stratum marine mud properties v - 10-4-10-2 m2/s, Go - lo4 kPa, 
and po - lo3 kg/m3 (e.g. Bea 1974) we see that a typical 10 s water wave will yield 
a viscous lengthscale S N 0.01-0.1 m which is much smaller than so' - 5 m and 
k-l - 150 m. This clearly suggests a boundary-layer treatment for the viscosity 
effects. The adopted boundary-layer structure is shown in figure 1 where the viscous 
behaviour is assumed to be confined within a thin interfacial layer a t  the mudline. 
The behaviour in the water above is assumed inviscid, and elastic in the bed 
below. 

Another important observation from the above-dimensional argument is the large 
difference between the gravity and the elastic lengthscales. The smallness of the ratio 
,u = k / s0  is a manifestation of the small elasticity that characterizes the gel-like mud 
of many of these coastal mud-bank regions. In fact, it will be assumed here that 
the elasticity lengthscale is of the same order of magnitude as the wave amplitude 
A - O( 1)  m. Thus, the relative effect of mudline elasticity is assumed comparable in 
magnitude with the wave's nonlinearity effect - O(kA) .  With increased depth from 
the mudline, however, the elasticity or stiffness of the bed material will, in general, 
increase because of consolidation effects, resulting in some sort of a stratification 
profile in the seabed. In  the present analysis a slow stable stratification in the bottom 
mud will be assumed, i.e. a slow transition from the soft condition near the mudline 
to a stiff bed condition far deep into the seabed. A simple WKB solution will 
be employed to  model the response in the stratified bed. The main feature of the 
WKB bed solution is the presence of a turning point below which the solution is 
exponentially decaying to infinity. 
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FIGURE 1. Definition sketch for the water wave-compliant bed system. Viscosity is confined to  a 
thin boundary layer at the mudline. The small elastic response below the mudline will be in the 
form of a standing shear wave of very short wavelength compared to  the gravity wavelength. 

The analysis will show that the small mudline elasticity will give rise to a highly 
unstable equilibrium around the surface gravity-wave solution. The linear solution 
itself is shown to be largely unaffected by the mudline elasticity and viscosity. 
However, slightly perturbing the solution by unstable sideband modulations will 
enhance the viscous damping of the wave. This is primarily because these unstable 
sidebands are also highly dissipative wave modes. The strong damping of these 
sidebands is caused by the presence of standing elastic shear waves in them. These 
shear waves, although very small in amplitude, are also very short in wavelength and 
hence can have an O(1) effect on the shear stress field in the bed. Therefore, such 
shear waves would have a significant dissipative capacity through their interaction 
with the viscous boundary layer a t  the mudline. A sideband instability analysis is 
worked out here to examine in some detail this proposed damping mechanism. 

2. The boundary-layer formulation 
Let a progressive water wave of frequency w and wave amplitude A propagate in 

an inviscid water layer of depth h above an incompressible elastic bed that occupies 
the lower half-plane y < 0. The elastic modulus G of the bed material is assumed to 
increase gradually with depth, starting from a small value Go near the mudline 
y = 0. Associated with the increase in G, there is a gradual increase in the density p 
of the bed material, following some stratification profile, with p = po a t  the mudline, 
as sketched in figure 1.  Thus, the mudline elasticity is characterized by the elastic 
lengthscale SO', 

SO' = (Go/pow2)i, 
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where so is the elastic shear-wave wavenumber a t  the mudline. We assume here that 
SO' is of the same order of magnitude as the wave amplitude A ,  i.e. 

$,A - O(l) ,  (2) 

which simply means that the mudline elasticity effect is assumed to be of the same 
order of magnitude as the water-wave nonlinearity effect. In  other words, if we scale 
both so' and A by the much larger water-wave lengthscale k-l = g/w2  we get 

,U = k/so - O ( E )  4 1 ,  (3a )  

E = kA ( 3 b )  

where E is the wave nonlinearity (wave steepness) 

and ,u is the measure of the mudline elasticity. 
A viscous boundary layer of thickness 6 - (v /w):  Q (s;l ,  k - l )  is fitted at the mudline 

in order to  satisfy the conditions of continuity of shear stress and tangential velocity 
across t,he water-bed interface. The kinematic viscosity v is taken to represent the 
combined viscosity of the water-mud mixture a t  the mudline. With these scalings we 
proceed with the statement of the problem. 

(i) In  the inviscid water layer, the horizontal and vertical velocities, u and v, are 
given in terms of the velocity potential @, i.e. 

and @ satisfies Laplace's equation 

V2@ = 0 

and the nonlinear free-surface boundary condition a t  y = h 

Qbtt + g@,, = [ - s(v@P)z +B@t @ytlt - [@z @tlz 

1 + y [ - g@z(vQb)2 + @, Qyt + @: + O( @'), y = h . (6) 

Compared with the left-hand side, the quadratic and cubic terms on the right arc of 
the order O(e)  and O ( E ~ ) ,  respectively. 

(ii) In  the elastic bed, the velocities u and v are instead given in terms of the 
potential Qb and the shear function !P as 

47 

where @ is still governed by Laplace's equation (5), while !Pis governed by the elastic 
shear-wave equation 

where c, is the elastic shear-wave speed. The appropriate boundary conditions for the 
elastic solution should be to satisfy the conditions of continuity of pressure and 
normal velocity across the mudline. The continuity of shear stress and tangential 



Sideband damping of water waves over a soft bed 193 

velocity across the interface will be satisfied separately by the boundary-layer 
solution at the mudline. 

Thus, for the elastic solution below the mudline, it is seen from (4) and (7) that  the 
continuity of the vertical velocity v requires that the potential @ must have a 
discontinuity across the mudline. The other condition of continuity of normal stress 
across the interface furthermore requires that 

where the superscripts + and - mean, respectively, just above and below the 
interface. By a simple dimensional argument, it is seen from (9) and (3) that the 
jump, or the discontinuity in @ is of O(e2) ,  i.e. 

(@+ - @-)/@ - O(fq  -4 1 ,  (10) 

and this also should be the relative order of magnitude of the shear function Y (i.e. 
from the velocity continuity requirement) 

Y/@ - O(a2). (11) 

Following a standard perturbation scheme, the potential @ in the whole water-bed 
domain h > y > - co is expanded as 

(12) 

where from (10) it appears that  we need to carry the analysis to $@) in order to 
account for the mudline elasticity. To be consistent, only the leading-order 'linear ' 
solution for Y will be sought (cf. (1 1))  for y < 0. In  order to allow for slow modulation 
in the wave, we introduce the following multiple scalings : 

@ = $(O) + €$(I) + 2qP) + . . . , 

2, XI = €X, .. .) t ,  t,  = st, t2 = € 2 t ,  ... , (13) 

and assume #(%) to be functions of the above scales. Substituting (12) into (5 ) ,  (6) and 
(9) we get a series of linear problems 

with free-surface condition 

and a t  the interface, for n > 1 

and at large depth q P + O  as y+-co. (17) 

The inhomogeneous terms F'"), H(") are functions of the lower-order potentials $(n- l ) ,  

$ ( n - 2 ) ,  . . . , and the series is to be solved in sequence. It is clear that  the solutions for 
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the first two potentials $(') and $(l) are identical to those obtained for deep-water 
waves in homogeneous fluid, since there is no contribution from (16), 

$(") is the homogeneous wave solution (F'O) = H(') = O ) ,  and A is the wave amplitude, 
k is the wavenumber, and w is the wave frequency 

w2 = gk, (19) 

k = pso. (20) 

(21) 

and we assumc the relation with the mudline elastic wavenumber, so as in (3),  i.e. 

Now, for $ ( 2 ) ,  we may linearly decompose thc solution by writing 

$(2) = + $p, 
where $A2), like q5(') and q5(l), is the classical solution for homogeneous fluid, while 
q5L2) is the new elastic, discontinuous solution. We require $A2) to satisfy (14), (15) and 
(17) which are identical to  the conditions for the third-order potential for deep-water 
waves (see e.g. Mei 1983). In  particular, the solvability condition for r$L2) will yield the 
familiar evolution equation for the wave amplitude A in the form of a nonlinear 
Schrodinger equation (Zakharov 1968) 

where cg = 9/20 is the group velocity of deep water. 
On the other hand, q5i2) satisfies (14) and (15) with zero right-hand sides, along with 

(16) and (17). The role of q5L2) is then to  slightly modify the dispersion relation (19). 
When combining q5L2), which is discontinuous a t  the mudline, with the viscous 
boundary-layer solution at the mudline, the modification to k in (19) becomes 
complex, with the imaginary k corresponding to the associated damping of the 
carrier wave. 

Besides the direct damping of the carrier wave energy by viscous friction at  the 
mudline, there also exists the possibility of a sideband instability through which the 
carrier wave would lose some of its energy to a narrow band of sideband oscillations, 
This well-known result, due to Benjamin & Feir (1967), can be seen by slightly 
perturbing the Stokes wave solution to  (22) with large-scale modulations, i.e. we 
let 

(23) 

where A, is the amplitude of the nonlinear Stokes wave, and a is the amplitude of the 
small perturbation over the long modulational scales of xi and t , .  Substituting (23) 
into (21) and dropping nonlinear terms in a ,  we see that D becomes pure imaginary 
(i.e. linear instability) in the narrow sideband 

A = (A, +a exp [i(Kx; - Qt,) exp [ - $iwk21AJ2 t 2 ) ]  ; xi = x, - cg t , ,  

IKlkl < d8W. (24 a)  

Max Q = +i+(k2A;). (246) 

The maximum energy transfer occurs when (K/kl = 2,424, a t  which 
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The question of interest here is to investigate the fate of this transferred energy to 
the sideband perturbations in the presence of the small mudline elasticity and 
viscosity. This would clearly depend on the modification of the dispersion relation by 
$L2) and Y, and is investigated in the following section. 

3. The eigenvalue problem 
Since both #O) and $?) satisfy the same governing equations, except condition 

(16), it is convenient here to superimpose the two potentials and solve for the 
combined response, i.e. we write 

$ = #O) +#2) e ,  (25) 

where from (14)-(17) we see that satisfies 

a t  y = h, 

-(#+-$-) a 2  = (2 -- ii) at  y = 0, 
a t 2  

95+0 as y+-co. (29) 

Furthermore, the requirement of continuity of vertical velocity across the mudline 
implies from (4) and (7)  that 

at y = 0, 
a ay/  
-($+.-#-) = -- 
aY ax 

with Y satisfying (8). The mudline boundary layer satisfies the remaining continuity 
conditions on shear stress and horizontal velocity. In the boundary layer, the total 
velocity u is composed of the inviscid velocity V$, plus a rotational velocity U = 
(U,  V ) .  The governing boundary-layer equation for U is 

with the boundary conditions 

U+O as y/8+co (outside the boundary layer), (32) 

at y = 0, 
ay/ -($+-@-) a = --u 

ax aY 
(33) 

where (33) is the condition for continuity of horizontal velocity, and (34) is the 
condition for continuity of shear stress. 
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3.1. The potentiul qi 
The solution to (26) in the inviscid water layer is given by 

where from ( 2 7 )  and (30) we have 

and 

v0 u = b + -  
k 

v (kg/w2-l)(tanhkh+1) 
2k 1 - (kg/w2) tanh kh ’ 

b = o  ( 3 7 )  

and where vo is the amplitude of the mudline vertical velocity. Below the mudline, 
the solution to (27)  is instead given by 

y < o ,  (38) $ = Cekuei(kz-wt) 

where the amplitude c is to be found by solving for the elastic response in the bed. 
Notice that in the absence of bed elasticity, k and o would exactly satisfy the deep- 
water dispersion relation (19), which means that b would vanish and $ would be 
continuous throughout. 

3.2. The elastic shear wave in the strati$ed bed 
A WKB solution to (8) for the shear function Y is given by (see e.g. Aki & Richards 
1980) 

exp[i [p(s2-kz)idy + 6’ +exp[ -i~~p~s2--k’):dy]}ei(k”””’, 
( 2 - k  ) 

(39a) 
1 U’ 

(82 - k2): 

where s = w / c ,  = ( p d / G ) :  (39b) 

is the shear wavenumber, which is assumed to  change slowly with depth, a‘ and b‘ are 
constants, and yp is the depth of the turning point a t  which the shear wavenumber 
becomes equal to the water-wave wavenumber, i.e. 

s =  k at y =yp .  (40) 

Above tJhe turning point, the solution for Y is oscillatory, made out of two shear 
waves, one moving upward and one moving downward. Below the turning point, the 
solution is exponential and is required to decay to infinity. Through standard 
turning-point manipulation, the oscillatory and the exponentially decaying solutions 
may be matched via Airy’s function, yielding a condition on the constants a’ and b‘, 
namely 

where E is a constant. Near the mudline, where G = Go and p = p o ,  we may 
approximate (39 a)  as 

Y = F cos (so my + /3) ei(kx-ot) near y = 0, (42u) 

where m = (1 -p”)”, (42b) 

and F is a constant. 
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3.3. The viscousJEow in the boundary layer 
The solution to (31) that satisfies (32) is given by 
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where from (33) we get an expression for U,: 

U, = -Fs,msinB-ik(a+b-c), (44) 

and from (34) we get the expression for the mudline shear : 7, = i, ei(kr-wt) , with the 
amplitude i, given by 

-i&, = (1+i)pow(vw/2)iU, = Go[2ilc2c+(2k2--~)Fcos/?]. (45) 

3.4. The dispersion relation 
From (28), (30), (33) and (34) we get the non-dimensional amplitudes of the velocity 
functions 4 and Y in the bed, i.e. 

_ -  4- c - (1  - 2y2) - 2,um tan PT 
4' a + b  - ( 1 - 2 , ~ ' ) ~ + 4 y ~ t a n / 3  ' 

F - ip2-0.5(1-2,u2)T 
- (1 - 2,u2)2 cos /3+ 4y3m sin p' (47) 

with 

From (7)  we get an expression for the non-dimensional amplitude vo of the mudline 
vertical velocity : 

Finally, we may relate the amplitude q5+ = a+b to the wave amplitude A a t  the 
water surface through the linear kinematic boundary condition 

which, from (35) and (49), yields 

l 1  tanh (Ich) 
+ ( 1  - 2 ~ ~ ) ~  + 4y3m tan /? 

- igA 
'+ = 2w cosh (Ich) 

On the other hand, the linear dispersion relation may be obtained by substituting 
(36) and (37) into (49) to get the relation for the non-dimensional wavenumber y = 

[( 1 - 2,~')' + 4p3m tan /3- 11 [ 1 - h,u tanh yh') = (hp - 1) (tanh ph' + 1) (1  + O( T ) ) ,  

L/SO 

( 5 2 4  

where h = sog/w2 ,  h' = soh. ( 5 2 h  c) 
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Strictly speaking, the above dispersion relation is to be solved coupled with the 
integral equation (42c) for ,8, to get a discrete set of the possible eigenvalues. 
However, as the turning point yp gets deeper below the mudline, the number of 
possible eigenvalues would increase in the range 0 < p < 1 until we approach the 
condition of an almost continuous p-spectrum for very deep turning point (i.e. very 
large /I). I n  this case, p can assume almost any value between zero and 1, and (52a) 
would merely serve to determine the corresponding p-value (to a 2nn additive). 

Out of this almost continuous spectrum of cigenvalues, our main interest here is 
primarily focused on what happens in a narrow band around the true surface wave 
solution near the linear wavenumber (19). I n  particular, we are interested in the 
wave damping characteristics a t  and near the surface wave eigenvalue. The 
dissipation of wave energy is assumed to take place in the mudline boundary layer 
and is given hy (e.g. Dalrymple & Liu 1978) 

where the overbar denotes the time average over one wave period, and Pd is the rate 
of energy dissipation per unit surface area. Thus, a steady-state wave energy balance 
requires 

where E, is the wave energy density 

From (43) and (45) wo see that energy dissipation is given by 

where the mudline shear amplitude do is given by (48a) and (51). Thus, in terms of 
a linear wave damping rate ki (i.e. the imaginary part of the eigcnvalue), which we 
see from (54) is given by 

= Pd/(2cg&). (57) 

Figure 2 shows sample results for the calculated damping rate ki in a narrow band 
around the surface-wave wavenumber - w 2 / g  and for a range of mudline shear-wave 
speeds c,(O) = (Go/po)i and a selected mudline viscosity v = low5 m2/s, a water-layer 
depth of 5 m, and wave period T = 10 s. Each curve in the figure gives the non- 
dimensional wavenumber kg/w2 as a function of c,(O) for a fixed damping rate ki. A 
true surface wave is thus defined here as the one that experiences zero damping, i.e. 
is represented by the curve ki = 0 in the figure. This zero damping would occur if the 
mudlinc boundary layer vanishes, that  is when there is a perfect match in tangential 
velocities of the inviscid water layer and the elastic bed a t  the mudline. It is secn 
from the figure that such a surface wave occurs for k slightly lower than the inviscid 
deep-water wavenumber w 2 / g  (non-dimensional wavenumber slightly lower than 
unity). 
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FIGURE 2. Non-dimensional wayenumber kg/w2 as a function of the mudline shear-wave speed 
e,(O) = (Go/po)? for various values of wave damping rate k, .  

4. Discussion of results 
The most important feature of the results in figure 2 is the relatively strong 

damping associated with the sideband oscillations around the true surface-water 
solution. This is particularly the case for very small mudline shear-wave speed, where 
a less than 1 ‘YO deviation in wavenumber from the zero-damping ‘true surface wave ’ 
solution would result in a very large jump in damping rate to ki > 0.1 m-l, i.e. an 
almost critically damped wave. This can be seen directly from the obtained results 
by first considering the dispersion relation (52a). For the surface wave solution, we 
have 

which means, by balancing both sides of (52a),  that 

t a n p  x 0b-l) for a surface wave. (586) 

Now, from (24a),  we see that the unstable sideband perturbation in wavenumber is 
of O(a) where e is the wave steepness. Thus, if instead of (58a) we let 

/!L x h - l ( l + e )  
we get from (52a) and (3a )  that 

t a n p  x O ( / ! L - ~ )  for sidebands. (59b) 

We then substitute the above orders of magnitude into (57) to get the associated 
changes in the damping rate. From (51), it is seen that there is hardly any change in 
$+ (i.e. the mudline pressure) over the range from (58)  to (59). However, there is a 
significant change in T ,  or the mudline shear over the same range. This is seen from 
(48) which gives T N O(k8) if we assume the surface-wave scaling (58), increasing 
significantly to T - O(s,6) by assuming the sideband scaling (59). This is an increase 
of O(,u-l) over the narrow span of the unstable sideband. The reason is primarily 
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FIGURE 3. Sideband damping of a 5 m-10 s surface wave by three upper sidebands with 
modulational wavenumbers K = (1,0.7,0.4) 2 k : 4 & .  The deep bottom mud has a mudline shear- 
wave speed = 1 m/s. 

attributed to the role of the short shear waves in the elastic bed as they interact with 
the viscous mudline boundary layer. Although the relative amplitude of the shear 
wave is proportional to O(,u2) 4 1, its lengthscale relative to  the gravity wave is of 
O(p)  so that it produces large gradients and hence O(1) shear stress a t  the mudline 
(cf. (45)). The exception occurs for surface wave solutions where the total shear stress 
a t  the mudline vanishes or almost vanishes identically due to the matching of the 
non-viscous tangential velocities there, i.e. the k, x 0 condition. 

For an illustration, we calculate the linear evolutions of three sideband 
perturbations to  a surface wave of amplitude 5 m and period 10 s over a deep mud 
bank with c,(0) = 1 m/s (figure 3). Each sideband has a different modulational 
wavenumber K = (l,0.7,0.4)Gax, where &,ax is the modulation &,ax = 2ki.4, for 
the maximum energy transfer as given in (24b). The initial amplitude of each 
sideband a t  x = 0 was set a t  0.01 m. The linear spatial growth rate for any unstable 
sideband is given by (Benjamin & Feir 1967) 

where k,  is the linear wavenumber d / g .  The sideband perturbations will be subjected 
to this linear growth rate, as well as the linear viscous decay rate ki from figure 2 .  The 
calculation was made for each sideband by assuming that, locally, the carrier-wave 
amplitude 4 is uniform so that we can use (60). Then, the net growth rate would be 
the difference a-lc, for each sideband. As we progress one step in distance II: in the 
direction of wave propagation, we calculate the change in A, from the energy-balance 
equation (54), where now the energy I&, is the total energy of all the waves, and 
Pa is the energy loss from the three sidebands. Figure 3 shows the obtained profiles. 
A spectacular damping of the wave energy is quite evident from the figure. Recall 
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that the kinematic viscosity in the boundary layer is assumed to be only m2/s, 
or only ten times that of pure water. For comparison, all other linear models would 
produce a damping lengthscale of about 10 km or longer if using the same kinematic 
viscosity (e.g. Dalrymple & Liu 1978; MacPherson 1980). As discussed before, wave 
energy is first transferred to the sideband perturbations causing them to grow. 
Notice that the modulation receiving the maximum sideband growth rate, K = &,,, 
did not grow to be the largest sideband. This is because its damping rate ki was also 
the largest among the sidebands. Therefore, there is an optimum modulational 
wavenumber, slightly less than %,,, that  will draw most of the energy from the 
carrier wave before losing it quickly to boundary-layer friction. In  figure 3, this 
corresponds to the K = 0.7GaX sideband. We further observe that all the generated 
sidebands are very short-lived because of their high damping rates. Repeating the 
calculations for different wave frequency, we obtained less spectacular damping rates 
for longer waves and more spectacular damping for shorter ones. But in all cases they 
are orders of magnitude higher than the rate due to direct viscous damping which is 
proportional to (wv); .  

Although the analysis predicts the trend to continue as Go + 0, a practical lower 
limit on this mechanism would be due to the breakdown of the elasticity assumption 
for very small mudline shear modulus Go. In reality, for very small Go, a yield 
condition would be reached for large enough wave-induced shear forcing. This would 
result in the ‘fluidization’ of part of the soft bed, and thus the effective lowering of 
the mudline interface between the fluid layer and the elastic ‘non-fluidized’ bed with 
now larger Go. After such ‘plastic’ adjustment of the sea-seabed system, the present 
model would still be applicable to describe the subsequent interaction. 
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